TOTAL SYNTHESIS OF (±)-11-Q-METHYL-CAESALPIN J AND ITS C-13 EPIMER

Gábor Blaskó¹ and Geoffrey A. Cordell*

Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A.

(Received in USA 3 January 1989)

Summary: The biomimetic total syntheses of racemic 11-O-methyl-caesalpin J (9) and 13-epi-1 I-Q-methyl-caesalpin J (IO), via phenolic oxidative coupling of the accordingly substituted homoisoflavans 6 and 7, are described.

In a previous paper² we described the isolation and structure elucidation of two representatives of a new class of cyclized homoisoflavan derivatives, 10-hydroxy-11-methoxy-dracaenone (1) and 7,10-dihydroxy-11methoxy-dracaenone (2), obtained from Dracaena loureiri Gagnep (Agavaceae). Together with caesalpin J (3). isolated from Caesalpinia sappan L. $(Agavaceae)^{3,4}$, these compounds constitute the first examples of the apparent phenolic oxidative coupling of a 7.3'-dihydroxy-homoisoflavan system to a tetracyclic skeleton to which we have given the name dracaenone⁵.

Biomimetic phenolic oxidative coupling of appropriately substituted homoisoflavans led us to the first successful syntheses⁶ of racemic 10-hydroxy-11-methoxy-dracaenone (1) and 7,10-dihydroxy-11-methoxydracaenone (2). respectively. As a continuation of our studies on the synthesis of cyclized homoisoflavans, we report here the total synthesis of 11-Q-methyl-caesalpin J (9) and its C-13 epimer (10) both of which possess an additional methoxy group at C-13 of the dracaenone skeleton.

In order to synthesize 11-Q-methyl-caesalpin J (9) we utilized the intermediate, 7.3'-dihydroxy-4' methoxy-benzalchromanone, from which the syntheses of 1 and 2 had formerly been achieved⁶. Protection

of the two phenolic hydroxy groups benzyl ethers and subsequent epoxidation of the C=C double bond with H₂O₂ and reduction of the epoxide with LiAlH₄ in dry THF gave, in 90% yield, a mixture of cis and trans dihydroxychromans 4 and 5 in the ratio of 2:3. Catalytic hydrogenation of 10 and 11 over Pd/C in MeOH containing 2% HCl gas afforded a complex reaction mixture, which, after separation, resulted in 3,7,3'-trihydroxy-4'-methoxy-homoisoflavan in 10% yield, two isomeric 3,7,3'-trihydroxy-4,4'-dimethoxyhomoisoflavans 6 and 7 in 26% and 39% yield, respectively, and $11-Q$ -methyl-brazillin $(8)^7$ in 12% yield. Treatment of either 6 or 7 with methanol containing 2% HCI gas (or 5% tartaric acid in methanol) afforded the same 2:3 mixture of 6 and 7 suggesting an S_{N1} type solvolytic nucleophilic substitution of the 4-hydroxy group on the chromane nucleus to a methoxy substituent. Higher HCl gas concentrations in methanol (above 15%) or heating the reaction mixture uniformly afforded the cyclixed product 8 probably due to a facile intramolecular electrophilic substitution reaction of the benzyl cation intermediate derived from either 6 or 7. Determination of the relative stereochemistry of the 4-methoxy group on the trisubstituted chromane ring, however, proved to be rather difficult. In fact. it was not possible on compounds 6 and 7 due to their almost identical spectroscopic properties (Table 1). Stereochemical differentiation could, however, be achieved on the corresponding cyclized products 9 and 10 obtained by separate phenolic oxidative coupling of homoisoflavans 6 and 7, respectively.

 $\ddot{}$

Spectra were recorded in DMSO-d₆. Chemical shift values are given in ppm (6) using TMS as internal standard. Coupling constants are given in Hz in parentheses. n.a.: hidden by solvent.

The oxidative cyclization was performed with thallium tristrifluoroacetate (TTFA)^{6,8,9} in dry chloroform **at -250C. Oxidation of homoisoflavan 6 gave II-Q-methyl-caesalpin J (9) in 34% yield. From the reaction mixture, 12% unreacted starting material (6) and 15% non-cyclixed p-quinone type side product 11 could** also be isolated. On the other hand, oxidation of the isomeric homoisoflavan 7 afforded 13-epi-11-Q**methyl-caesalpin J (10) and p-quinone 12 in 28% and 17% yields, respectively, in addition to 22% of the starting material 7 recovered from the reaction mixture. The IH-lH Co6Y spectrum of 9 measured in** CD₃OD exhibited a strong W coupling between 6-H_{α} and 13-H_{α}, supporting the β - (axial) orientation of **the 13-methoxy group in 9. This coupling. however, was absent in the JH-'H COSY spectrum of** compound 10 measured in CD₃OD but was replaced by a W coupling between $8-H_{\alpha}$ and $13-H_{\beta}$ establishing the α steric position of the 13-methoxy group in compound 10.

Determination of the relative steric position of the 13-methoxy group in the cyclized homoisoflavans is and 10 permitted retrospective determination of the relative stereochemistry in the parent homoisoflavan 6 and 7, respectively, assuming complete retention of the relative configuration of the C-4 stereo center during the cyclization reaction. It should be noted that no epimerization was observed when either 9 of 10 was treated with methanol containing 2% HCl gas. Complete ${}^{1}H-$ and ${}^{1}3$ C-NMR assignments of 11- Q . methyl-caesalpin J (9) and its C-13 epimer (10) are shown in Table 2.

^a Recorded in CD₃OD; ^b Recorded in DMSO- d_6

All of the compounds synthesized were evaluated in the P-388 and KB lymphocytic leukemia test system! in vitro according to established protocols $10, 11$. Only homoisoflavan-quinone derivatives 11 and 1; exhibited cytotoxic activity. Compound 11 displayed an ED₅₀ = 6.88 μ g/ml against the KB and ED₅₀ = 0.93 μ g/ml against the P-388 test systems. Compound 12 was found to be inactive against the KF test, but showed ED_{50} = 3.6 μ g/ml against the P-388 leukemia test system. ¹H- and ¹³C-NMF assignments of homoisoflavan-quinooes 11 and 12 are summarized in Table 1.

In summary, the total syntheses of (\pm) -11-Q-methyl-caesalpin J (9) and its C-13 epimer 10 has beet achieved via biomimetic phenolic oxidative coupling of homoisoflavans 6 and 7; compounds which ma) subsequently also prove to be natural products.

EXPERIMENTAL

Melting points were determined on a Kofler micro hot-stage apparatus and are uncorrected. Preparative column chromatography was performed on Silica gel 60 (70-230 mesh) (E. Merck). Thin-layer chromatography (tic) was performed on Silica gel GHLF Uniplates (Analtech Inc.). IR spectra were recorded by a Nicolet $MX-1$ interferometer. ${}^{1}H-NMR$ spectra were obtained on a Varian XL-300 spectrometer operating at 300 MHz. For the homonuclear CGSY spectra the standard Varian pulse program was used. 13 C-NMR spectra were measured at 90.8 MHz using a Nicolet NMC-360 spectrometer. Chemical shifts (6) are reported in ppm using TMS as internal standard. All compounds synthesized gave satisfactory mass spectra (data are not reported) determined with a Varian MAT 112s double focusing mass spectrometer operating at 80 eV.

7-Hydroxy-3-(3'-hydroxy-4'-methoxybenzylidene)-chroman-4-one. 7-Benzvloxy-3,9-epoxy-3-(3'-benzyloxy- 4 -methoxybenzyl)-chroman-4-one and 7 -Benzyloxy-3.4-dihydroxy-3-(3'-benzyloxy-4-methoxy-benzyl)chromans (4) and (5) .

Details on the preparation of these starting materials, together with their physical and spectroscopic properties, are described in Ref. 6.

$3.7.3'$ -Trihvdroxv-4.4'-dimethoxv-homoisoflavans 6 and 7.

Atmospheric hydrogenation of a mixture of 4 and 5 (1.2 g, 2.4 mmol) in MeOH (50 ml) containing 2% HCl gas over Pd(C) catalyst (0.2 g) followed by neutralization with NH₃ in MeOH and by the usual work up procedure, including purification by column chromatography using CHCl₃-MeOH (100:2) as eluent, afforded the following materials in order of elution;

(\pm)-6 (207 mg, 26%), mp: 134-135^oC; C₁₈H₂₀O₆ (Found: C, 64.79; H, 6.09. Calc.: C, 65.04; H, 6.07); ¹Hand $13C-NMR$ spectral data are shown in Table 1.

(t)-7 (310 mg, 39%), mp: 181-182^oC; C₁₈H₂₀O₆ (Found: C, 65.01; H, 6.15. Calc.: C, 65.04; H, 6.07); ¹Hand 13 C-NMR spectral data are shown in Table 1.

 (t) -3,7,3'-trihydroxy-4'-methoxy-homoisoflavan (72 mg, 10%), mp: 146-148^oC; for spectral data see Ref. 6. (t) -8 (86 mg, 12%), mp: 205-206^oC.

Treatment of homoisoflavan 6 (20 mg, 0.06 mmol) with MeGH (2 ml) containing 2% HCI gas at room temperature for 6 h followed by preparative tic afforded homoisoflavan 6 (7 mg, 35%) and its epimer 7 (11 mg, 55%). A similar ratio of products 6 and 7 was observed when homoisoflavan 7 was similarly treated with methanol containing either 2% HCl gas or 5% tartaric acid.

(\pm) -11-O-Methyl-brazilin (8).

A mixture of 6 and 7 (0.4 g, 1.2 mmol) was dissolved in MeGH (10 ml) containing 15% HCl gas and kept overnight at room temperature. Evaporation of the solvent in vacua followed by crystallization from MeOH gave (\pm)-8 (314 mg, 87%), mp: 215-216⁰C; C₁₇H₁₆O₅ (Found: C, 67.97; H, 5.40. Calc.: C, 67.98; H, 5.37); ¹H-NMR (DMSO-₉₆) 6 2.76 (1H, d, 16.5, 8-H_a), 2.87 (1H, d, 16.5, 8-H_b), 3.62 (1H, d, 11.3, 6-H_a), 3.84 (lH, d, 11.3, 6-Hb), 3.71 (3H, s, 11-GCH3). 3.88 (IH, s, 13-H). 6.20 (lH, d, 2.5, 4-H). 6.41 (lH, dd, 8.5, 2.5, 2-H), 6.58 (1H, s, 12-H), 6.83 (1H, s, 9-H), and 7.25 (1H, d, 8.5, 1-H); ¹³C-NMR (DMSO-d₆) 6 131.70 (C-l), 108.90 (C-2). 156.46 (C-3), 102.74 (C-4), 153.99 (C-4a). 76.45 (C-6). 69.55 (C-7). 41.84 (C-8). 131.91 (C-8a). 112.08 (C-9), 146.52 (C-IO), 145.76 (C-11). 114.30 (C-12), 135.31 (C-12a). 49.94 (C-13), 114.34 (C-13a). and 55.90 (II-OCH3).

(t) -11-O-Methyl-caesalpin J (9).

To a solution of the homoisoflavan 6 (200 mg, 0.6 mmol) in dry CHCl3 (70 ml), thallium tristrifluoracetate (400 mg, 0.74 mmol) was added at -25° C, and the reaction mixture maintained at this temperature for 8 h. After extraction with water (20 ml), the organic phase was dried and evaporated. Separation of the crude reaction mixture by column chromatography using CHCl₃-MeOH (100:1) as eluent afforded:

(t)-11 (31 mg, 15%), mp: 165-166^oC; C₁₈H₁₈O₇ (Found: C, 62.77; H, 5.16. Calc.: C, 62.41; H, 5.24); ¹Hand ¹³C-NMR spectral data are shown in Table 1.

(\pm)-9 (67 mg, 34%), mp: 228-229⁰C; C₁₈H₁₈O₆ (Found: C, 65.62; H, 5.63. Calc.: C, 65.43; H, 5.50); ¹H- and $13C-NMR$ spectral data are summarized in Table 2.

(*)-6 (24 mg, 12%).

$(t)-13-Epi-11-O-methyl-caesalpin J (10).$

To a solution of the homoisoflavan 7 (100 mg, 0.3 mmol) in dry CHC13, thallium tristrifluoracetate (200 mg, 0.37 mmol) was added at -25^oC, and the reaction mixture maintained at this temperature for 6 h. After extraction with water (10 ml), the organic phase was dried and evaporated. Separation of the crude reaction mixture by column chromatography using CHCl3-MeOH (100:1) as eluent gave:

(\pm)-12 (18 mg, 17%), amorphous; ¹H- and ¹³C-NMR spectral data are shown in Table 1.

(\pm)-10 (28 mg, 28%), mp: 214-216⁰C; C₁₈H₁₈O₆ (Found: C, 65.74; H, 5.68. Calc.: C, 65.43; H, 5.50); ¹Hand 13 C-NMR spectral data are summarized in Table 2.

(*)-7 (22 mg, 22%).

Acknowledgements

This work was supported, in part, by grant CA-20164 from the Division of Cancer Treatment, National Cancer Institute, Bethesda, MD.

References and Notes

- I. On leave from the Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary.
- 2. Meksuriyen, D.; Cordell, G.A.; Ruangrungsi, N.; Tantivatana, P.; <u>J. Nat. Prod.</u>, 1987, <u>50.</u> 1118.
- 3. Shimokawa, T.; Kinjo, J.; Yamahara, J.; Yamasaki, M.; Nohara, N.; <u>Chem. Pharm. Bull.</u>, 1985, 33 3545.
- 4. Miyahara, K.; Kawasaki, T.; Kinjo, J.; Shimokawa, T.; Yamahara, Y.; Yamasaki, M.; Hantno, K.; Nohara, N.; Chem. Pharm. Bull., 1986, 36, 4166.
- 5. The ring system 7,8-dihydro-6H-7,12b-methano-3H-dibenz[b,d]oxocin-3-one was named as dracaenone
- 6. Blaskó, G.; Cordell, G.A.; <u>Heterocycles,</u> 1988, 27. 445
- 7. Livingstone, R.; Nat. Prod. Rep., 1987, 4. 25.
- 8. Schwartz, M.A.; Mami, I.; <u>J. Am. Chem. Soc.</u>, 1975, <u>97.</u> 1239.
- 9. Szántay, Cs.; Blaskó, G.; Bárczay-Beke, M.; Péchy, P.; Dörnyei, G.; <u>Tetrahedron Lett.</u>, 21 3509.
- 10. Geran, R.I.; Greenberg, N.H.; McDonald, M.M.; Schumacher, A.M.; Abbott, B.J.; <u>Cancer Chemother</u> Rep., 1972, 3. 1.
- 11. Arisawa, M.; Bevelle, C.A.; Pezzuto, J.M.; Cordell, G.A.; <u>J. Nat. Prod.,</u> 1984, 47, 453.